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Abstract

This paper presents the experimental validation of a coupled periodic finite element–boundary element model for the

prediction of subway induced vibrations. The model fully accounts for the dynamic interaction between the train, the

track, the tunnel and the soil. The periodicity or invariance of the tunnel and the soil in the longitudinal direction is

exploited using the Floquet transformation, which allows for an efficient formulation in the frequency–wavenumber

domain. A general analytical formulation is used to compute the response of three-dimensional invariant or periodic media

that are excited by moving loads.

The numerical model is validated by means of several experiments that have been performed at a site in Regent’s Park on

the Bakerloo line of London Underground. Vibration measurements have been performed on the axle boxes of the train,

on the rail, the tunnel invert and the tunnel wall, and in the free field, both at the surface and at a depth of 15m. Prior to

these vibration measurements, the dynamic soil characteristics and the track characteristics have been determined. The

Bakerloo line tunnel of London Underground has been modelled using the coupled periodic finite element–boundary

element approach and free field vibrations due to the passage of a train at different speeds have been predicted and

compared to the measurements.

The correspondence between the predicted and measured response in the tunnel is reasonably good, although some

differences are observed in the free field. The discrepancies are explained on the basis of various uncertainties

involved in the problem. The variation in the response with train speed is similar for the measurements as well as the

predictions.

This study demonstrates the applicability of the coupled periodic finite element–boundary element model to make

realistic predictions of the vibrations from underground railways.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Subway induced vibrations are a matter of growing concern in densely populated cities. The interaction
between the wheels and the rails induces dynamic loads on the track, which generate waves that propagate
through the tunnel and the surrounding soil into buildings. Residents in buildings may perceive these
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vibrations directly or indirectly in the form of re-radiated noise. Vibrations may also interfere with sensitive
equipment used in research laboratories or hospitals. The frequency range of interest for subway induced
vibrations is 1–80Hz, while that of re-radiated noise is 16–250Hz.

Great efforts have been made in the last two decades to develop models for prediction of ground-borne
vibrations. Recently, Yang et al. [1] have reviewed studies on ground-borne vibrations with emphasis on those
induced by underground railways. Empirical methods and simplified deterministic models are extensively used
to quantify these vibrations. Empirical laws are usually derived from a vast data set collected from elaborate
measurement campaigns on a number of sites [2–4]. Trochides [5] has proposed a method based on
approximate impedance formulae for the tunnel–soil–building system and on energy considerations. He has
compared the predictions to measurements on a scaled model.

Deterministic models comprise two-dimensional [6–9] and three-dimensional models [10–12] based on the
finite element method, the boundary element method or the coupled finite element–boundary element method
[13,14]. Two-dimensional models necessitate important simplification to translate the three-dimensional
(moving) load into an equivalent two-dimensional load and also underestimate geometric damping in the soil.
Furthermore, the wave transmission in the direction of the tunnel axis is not accounted for in two-dimensional
models. The main disadvantage of three-dimensional models is that they become prohibitively large for
application in the wide frequency range under consideration.

To overcome the shortcomings of two-dimensional and three-dimensional models, two-and-a-half-
dimensional and periodic models are often preferred. These models solve the three-dimensional dynamic
track–tunnel–soil interaction in an efficient way, assuming that the geometry in the longitudinal direction is
invariant or periodic. Most of these advanced models account for three-dimensional dynamic track–tunnel–
soil interaction. A two-and-a-half-dimensional model based on the coupled finite element–boundary element
approach has been developed by Sheng et al. [15] and Andersen et al. [16]. The model uses the Fourier
transform to formulate the problem in the frequency–wavenumber domain and is based on a subdomain
formulation where the finite element method is used for the track and tunnel, while the boundary element
method is used for the soil. Some researchers have also used a two-and-a-half-dimensional finite/infinite
element approach to model ground-borne vibrations [17,18]. The response to moving loads in case of invariant
domains has been derived by Lombaert et al. [19,20].

Within the framework of the CONVURT project [21], two numerical models have been developed: the pipe-
in-pipe model [22–24] and the coupled periodic finite element–boundary element model [25,26]. The pipe-in-
pipe model is a two-and-a-half-dimensional model that assumes the geometry in the longitudinal direction to
be invariant. The model is based on an analytical solution of the shell equations for the tunnel and the wave
equations for an elastic continuum representing the soil. The coupled periodic finite element–boundary
element model uses the Floquet transform to exploit the periodicity (or invariance) in the longitudinal
direction. Even though periodicity of the track–tunnel–soil system is exploited, the coupled periodic finite
element–boundary element model is still quite demanding from a computational point of view. Recently, the
coupled periodic finite element–boundary element model and the pipe-in-pipe model have been compared
[23,27] to validate the two different approaches of tackling the dynamic track–tunnel–soil interaction problem.
The response of periodic domains subjected to moving loads has been derived by Chebli et al. [28] and applied
by Gupta et al. [29] to predict the vibrations on the Beijing metro network.

This paper concentrates on the experimental validation of the coupled periodic finite element–boundary
element model. Within the frame of the CONVURT project elaborate in situ vibration measurements have
been performed at a site in Regent’s Park situated above the north- and south-bound Bakerloo line tunnels of
London Underground. Vibration measurements have been performed during engineering hours at night for 35
passages of a test train in the north-bound Bakerloo line tunnel at a speed between 20 and 50 km/h. In
addition, rail and wheel roughness have been measured, while the track characteristics have been determined
by rail receptance measurements [30]. The dynamic soil characteristics have been determined by in situ tests
(seismic cone penetration tests (SCPT), SASW) and by laboratory testing on undisturbed samples [31]. The
results of the vibration measurements have been presented by Degrande et al. [32].

The modelling of the tunnel on the Bakerloo line using the coupled periodic finite element–boundary
element model has also been presented by Degrande et al. [26], where the main focus was on solving
the dynamic tunnel–soil interaction problem and on explaining the transfer functions. In the present paper,
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this tunnel–soil model is improved for the purpose of experimental validation and the track is incorporated in
the tunnel. The response of the track–tunnel–soil system during the passage of a test train in the Bakerloo line
tunnel at different speeds is computed and compared to the measurements.

Lombaert et al. [20] have experimentally validated a model for railway induced vibrations by means of tests
performed on the HST track on the line L2 between Brussels and Köln. They have highlighted the importance
of the dynamic train–track interaction to determine the excitation forces. Sheng et al. [33] have considered
experiments at three different sites: Ledsgard in Sweden (soft soil), Via Tedelda in Italy and Burton Joyce in
Nottinghamshire, United Kingdom, and have discussed the relative importance of the quasi-static and
dynamic forces. In the present paper, the quasi-static as well as dynamic forces due to the wheel and rail
unevenness, rail joints and the parametric excitation are considered.

As a large number of parameters related to the dynamic behavior of the vehicle, the track unevenness, the
geometry and material properties of the track and the tunnel, and the dynamic soil properties are involved,
there are several potential sources of uncertainty. Hunt and Hussein [34] have outlined various sources of
uncertainty in the process of using numerical models for the prediction of vibration from railways and
questioned the prospect of achieving a prediction accuracy of better than 10 dB. The impact of uncertainties in
the soil characteristics on the prediction of ground vibrations has been studied by Schevenels et al. [35].
A difference of more than 10 dB on the transfer functions has been observed due to a 10% variation in the
dynamic soil characteristics.

The objective of the present paper is two-fold. The first aim is to describe how the relevant information from
the tests is extracted to model the Bakerloo line tunnel using the coupled periodic finite element–boundary
element approach. The properties of the tunnel and the soil have been taken from Degrande et al. [32], while
the excitation force and the track parameters are obtained by further analysis of the measurement data.
Subsequently, the response to moving trains for different train speeds is computed and compared to the
experimental results.

The second aim of the paper is to prosper a better understanding in the generation and propagation
mechanism of vibrations from underground railways. Some of the important parameters, which are crucial for
the accurate prediction of the ground-borne vibrations are highlighted. The discrepancies in the predictions
and the measurements are explained.

The paper is organized in the following manner. Section 2 briefly describes the methodology for predicting
ground-borne vibrations from underground railways. The modelling of the Bakerloo line tunnel using the
coupled finite element–boundary element model is described and the computation of the transfer functions
and the wheel/rail interaction forces is discussed. Emphasis has been given on the determination of the
dynamic forces from the measured roughness and the axle box vibrations. Section 3 presents the results for the
simulations, where the response in the tunnel and the free field is predicted and validated for the passage of a
train at a speed of 47.6 km/h. The validation of the response for other train speeds and the study of variation
of the response with train speed are presented in Section 4.

2. The numerical method

Within the frame of the CONVURT project [21], a coupled periodic finite element–boundary element model
has been developed that exploits the longitudinal invariance or periodicity of the track–tunnel–soil system
[25,26]. The three-dimensional dynamic tunnel–soil interaction problem is solved with a subdomain
formulation, using a finite element method for the tunnel and a boundary element method for the soil,
modelled as a horizontally layered elastic halfspace. The response to moving loads is deduced from the
frequency content of the axle loads and the transfer functions in the frequency–wavenumber domain
[20,28,29].

2.1. Response due to moving loads

In the fixed frame of reference, the distribution of na vertical axle loads moving in the longitudinal
direction ey on the coupled track–tunnel–soil system is written as the summation of the product of Dirac
functions that determine the time-dependent position xk ¼ fxk0; yk0 þ vt; zk0g

T and the time history gkðtÞ of the
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k-th axle load:

rbðx; tÞ ¼
Xna

k¼1

dðx� xk0Þdðy� yk0 � vtÞdðz� zk0ÞgkðtÞez (1)

yk0 is the initial position of the k-th axle that moves with the train speed v along the y-axis and ez denotes the
vertical unit vector.

An infinite periodic structure can be analyzed using the Floquet transform [25,26] by restricting the problem
domain O to a single periodic unit or reference cell Õ. If the spatial period is L, then the position x of any point
in the problem domain is decomposed as x ¼ x̃þ nLey, where x̃ is the position in the reference cell and n is the
cell number. The response to moving loads in case of periodic domains is given by [28,29,36]

ûiðx̃þ nLey;oÞ ¼
1

2p

Xna

k¼1

Z 1
�1

ĝkðo� kyvÞ exp½�ikyðnL� yk0Þ�

Z L=2

�L=2
expð�ikyỹ

0Þ
˜̂hziðx̃

0; x̃; ky;oÞdỹ0 dky (2)

where ky ¼ ky � 2mp=L. The transfer function
˜̂hziðx̃

0; x̃;ky;oÞ in the frequency–wavenumber domain is the
Floquet transform of the transfer function ĥziðx̃

0; x̃þ nLey;oÞ in the frequency–spatial domain [25,26]. It can

be seen from Eq. (2) that the transfer function ˜̂hziðx̃
0; x̃;ky;oÞ and the frequency content of the axle load ĝkðoÞ

are needed to compute the response to moving loads.
The transfer functions are computed by means of the coupled periodic finite element–boundary element

model using the classical domain decomposition approach based on the finite element method for the tunnel
and the boundary element method for the soil [26], while the axle loads are computed by solving a wheel–track
interaction problem.

2.2. Characteristics of the vehicle, track, tunnel and soil

The Bakerloo line tunnel of London Underground is a deep bored tunnel with a cast iron lining and a single
track, embedded in London clay at a depth of 28m. The tunnel has an internal radius of 1.83m and a wall
thickness of 0.022m (Fig. 1). There are six longitudinal stiffeners and one circumferential stiffener at an
Fig. 1. (a) Cross section of the metro tunnel on the Bakerloo line at Regent’s Park. (b) Finite element model of the reference cell.
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interval of 0.508m, resulting in a periodic structure. The Floquet transform is used to exploit the periodicity of
the geometry and to restrict the problem domain to a single bounded reference cell [26]. The finite element
model of the reference cell is made using the general purpose finite element program ANSYS. Fig. 1b shows
the finite element model of the tunnel’s reference cell, where shell elements have been used for the cast iron
lining, while the longitudinal and circumferential stiffeners are modelled using beam elements. The concrete on
the tunnel invert has been modelled using 8-node brick elements with incompatible bending modes. The size of
the finite elements is governed by the boundary element mesh along the tunnel–soil interface, so that ideally a
minimum of N ¼ 8 elements are used per minimum shear wavelength lmin

s ¼ Cs=f max, with Cs ¼ 325m=s the
shear wave velocity in the soil layer around the apex of the tunnel and f max ¼ 100Hz the maximum excitation
frequency of interest. This results in a recommended element length le ¼ lmin

s =N ¼ 0:40m. In the present
model, two elements are used in the longitudinal direction (le ¼ 0:2540m), while 48 elements are used to model
the tunnel lining in the circumferential direction (le ¼ 0:2395m).

The soil is modelled as an elastodynamic medium, which is characterized by the shear modulus, Poisson’s
ratio, the density and the material damping ratio. Various damping models can be used for the analysis. In
structural mechanics, viscous damping models are frequently used. Viscous damping is rate dependent and the
energy dissipation increases with the frequency. In soil dynamics, material damping is usually assumed to be
rate independent in the low frequency range and a hysteretic material damping model is widely used for
applications in the frequency domain, using complex Lamé coefficients [37].

Dynamic soil characteristics have been determined by in situ tests (SASW, SCPT, CPT) as well as by
laboratory tests on undisturbed samples (bender element test, free torsion pendulum test) [31,32]. The seismic
cone penetration tests (SCPT) were performed at four locations in the free field FF02, FF04, FF07 and FF09
(Fig. 10). The classical cone penetration tests were also performed at the same points, to measure the cone
resistance and friction ratio. These tests have revealed that the tunnel is embedded in a layered soil consisting
of a single shallow layer with a thickness of 5m on top of a homogeneous halfspace consisting of London clay.
The top layer is not very homogeneous, and soil characteristics differ considerably at different measurement
points in the free field. For the computations, the top layer is assumed homogeneous, with a shear wave
velocity Cs ¼ 325m=s, a longitudinal wave velocity Cp ¼ 1964m=s, a density rs ¼ 1980 kg=m3 and a material
damping ratio bs ¼ 0:042. The underlying halfspace has a shear wave velocity Cs ¼ 220m=s, a longitudinal
wave velocity Cp ¼ 1571m=s, a density rs ¼ 1980 kg=m3 and a material damping ratio bs ¼ 0:039. The
material damping ratio is determined by means of free torsion pendulum tests in the laboratory. The accurate
determination of the material damping ratio is important for reliable predictions of ground vibrations [38].
However, the uncertainty associated with the material damping ratio is high and the predictions in the free
field are expected to be less reliable. Moreover, as the tunnel is situated at a considerable depth, the dynamic
soil properties around the tunnel could not be precisely estimated. It has been assumed that the tunnel is
embedded in a homogeneous layer of London clay. The soil in the immediate vicinity of the tunnel strongly
influences the wave propagation from the tunnel in all directions, thus, uncertainty remains in the prediction
of the free field vibrations.

The track is a non-ballasted concrete slab track with Bullhead rail supported on hard wooden sleepers
nominally spaced at d ¼ 0:95m with cast iron chairs. Both ends of a sleeper are concreted into the invert and
the space between the sleepers is filled with shingle. The shingle does not support the sleepers but only provides
drainage and facilitates evacuation in case of an emergency. The shingle can be modelled as an added mass on
the tunnel invert, but has been ignored as its mass is substantially less than the mass of the tunnel and the
concrete invert. The rails have a mass per unit length rrAr ¼ 47 kg=m and a bending stiffness
ErIr ¼ 3:04� 106 Nm2. The rails are not supported by rail pads and the resilience is mainly provided by
the bending of the timber sleepers, which have a varying stiffness depending on their moisture content. An
invariant track model instead of a periodic one is used in the present analysis, where the mass and stiffness
properties of the discretely supported track are uniformly distributed in the longitudinal direction. A
comparison between homogeneous and periodic track models has been made by several researchers [39–41].
The conclusion of these studies has been that the continuously supported models are appropriate for the
vertical track dynamics in the low frequency range between 1 and 100Hz. In the present case, the dynamic
behavior of the track has also been studied using a homogeneous track model as the pinned–pinned resonance
occurs at a frequency well above 100Hz. The track model consists of two infinite Euler beams representing the
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two rails and mass elements representing the sleepers. The mass of the sleepers is distributed in the
longitudinal direction with a mass per unit length ms ¼Ms=d ¼ 70 kg=m. As there are no rail pads, a stiff
connection is assumed between the rails and the sleepers, while the sleepers are continuously supported on the
tunnel invert with springs, whose stiffness and damping values are determined from rail receptance
measurements. The continuous elastic support below the sleepers accounts for the resilience in the track. If the
stiffness of the track is much lower than the stiffness of the track bed, the track bed can be considered as a
rigid foundation for calculating the rail receptance. Thus, the model of a track on a rigid base is used to
calculate the rail receptance in the frequency range between 1 and 500Hz. Fig. 2 shows the measured and the
computed receptance of the rail. The stiffness k̄s ¼ ks=d ¼ 100MN=m2 and damping c̄s ¼ 15� 104 N s=m2 in
the elastic support are used to calculate the rail receptance. The computed receptance is close to the measured
receptance at frequencies above 200Hz. The receptance measured at mid span between the sleepers shows a
pinned–pinned resonance frequency of 380Hz, which is not visible in the calculated results, as a homogeneous
model of the track has been assumed. At frequencies below 150Hz, the measured rail receptance is not reliable
as the coherence of the measurements is low. A high value of the damping is used to suppress the resonance, as
no resonance has been observed in the rail receptance measurements within 300Hz. The choice of the track
parameters will be further justified by observing the wheel–track resonance frequency and the quasi-static
response on the rail.

The test train employed for vibration measurements on the Bakerloo line consists of seven cars: a driving
motor car, a trailer car, two non-driving motor cars, two trailer cars and a driving motor car. Fig. 3 shows the
composition of the first three cars of the test train. The length of a motor car is Lt ¼ 16:09m, while the length
of the trailer car is Lt ¼ 15:98m. The bogie distance Lb on all cars is 10.34m, while the axle distance
La ¼ 1:91m. The distance between the first and the last axle of the train is 108.33m. The wheels are of the
monobloc type and have a diameter of about 0.70m. The tare mass of a motor car is 15330 kg, while the bogie
mass is 6690 kg and the mass of wheelset is 1210 kg. The tare mass of a trailer car is 10600 kg, while the bogie
mass is 4170 kg and the mass of a wheelset is 950 kg. The carriage length Lt, the distance Lb between bogies,
the axle distance La, the total axle mass Mt, the sprung axle mass Ms and the unsprung axle mass Mu of the
motor car and the trailer car are summarized in Table 1.
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Fig. 3. Composition of the first three cars of the test train and position of the wheelsets A, B and C on the trailer car, as well as the

numbering of the axle boxes.
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Table 1

Geometrical and mass characteristics of the test train.

Lt (m) Lb (m) La (m) Mt (kg) Ms (kg) Mu (kg)

Motor car 16.09 10.34 1.91 8387.5 7177.5 1210

Trailer car 15.98 10.34 1.91 5685 4735 950

S. Gupta et al. / Journal of Sound and Vibration 321 (2009) 786–812792
2.3. Transfer functions

As the reference cell of the tunnel is bounded, the tunnel displacements ũtðx̃;ky;oÞ are decomposed on a
basis of functions W̃tðx̃;kyÞ, while the soil displacements ũsðx̃; ky;oÞ are written as the superposition of waves
that are radiated by the tunnel into the soil.

The weak or variational formulation of the problem results in the following system of equations in the
frequency–wavenumber domain [25,26,42]:

½KtðkyÞ � o2MtðkyÞ þ Ksðky;oÞ�aðky;oÞ ¼ Ftðky;oÞ (3)

where KtðkyÞ and MtðkyÞ are the projection of the finite element stiffness matrix and mass matrix of the
tunnel’s reference cell on the tunnel modes W̃tðx̃; kyÞ, while Ksðky;oÞ is the dynamic stiffness matrix of the soil
calculated with a periodic boundary element formulation with Green–Floquet functions defined on the
periodic structure with period L along the tunnel [25,42].

Eq. (3) is solved to obtain the displacement field in the reference cell in the frequency–wavenumber domain.
The displacements in the frequency-spatial domain are obtained using the inverse Floquet transform [25,26].

The Craig–Bampton substructuring technique is used to efficiently incorporate a track in the tunnel [26,29].
The kinematics of the track-tunnel system are described as a superposition of track modes on a rigid base and
the quasi-static transmission of free tunnel modes into the track. The advantage of this approach is that the
dynamic stiffness of the soil only depends on the periodic tunnel modes and does not change when alternative
track structures are considered. Gupta et al. [43] have described three strategies to select the kinematical basis
W̃tðx̃; kyÞ. The strategy used in this paper involves the computation of eigenmodes of the tunnel’s reference cell
after imposing the periodicity condition of the second kind. This results in a complex wavenumber-dependent
eigenvalue problem, which should be solved at each wavenumber. To reduce the computational effort, the
complex eigenvalue problem is solved for only a few lower modes M at selected wavenumbers ½ky1;ky2; . . . ;kyq�

in the range ½0;p=L�. These eigenvectors are collected in a matrix and a singular value decomposition is applied
to obtain the kinematical basis W̃t. In the present case, 84 periodic modes of the second kind [26] are
determined and used for the computation, which include 60 free tunnel modes and 24 track modes on a rigid
base. The number of modes is large enough to obtain the converged solution.

Fig. 2 also shows the rail receptance in the frequency range between 1 and 150Hz, calculated from a full
three-dimensional dynamic track–tunnel–soil interaction problem. It is shown that the rail receptance
computed from this approach is the same as calculated from the track model on a rigid base.

The wave field radiated into the soil is computed using the dynamic representation theorem in the
unbounded soil domain corresponding to the reference cell. The transfer functions in the frequency–wave-
number domain are used in Eq. (2) to compute the incident wave field due to a moving train.

In the following, the transfer functions are calculated with a load of 0.5N on each rail to account for the
equal distribution of the train load on both rails. Fig. 4 shows the transfer function at the tunnel invert, in the
free field at 5.5 and 23.3m from the tunnel, on the surface, and at 23.3m from the tunnel, at a depth of 15m.
The transfer functions give an insight into the wave propagation in the free field. Superimposed on these
graphs are Green’s functions of the layered halfspace with the same properties as the soil where the tunnel is
embedded. The transfer function at the tunnel invert does not show any marked resonance due to the dynamic
tunnel–soil interaction and the dissipation of energy due to material and geometrical damping in the soil. The
experimental transfer functions are not available from the measurement campaign and thus, the experimental
validation of the transfer functions is not possible. The transfer functions in the free field (Figs. 4b–d) are
similar to that of a point load applied in a layered halfspace as the tunnel has a small diameter and is situated
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Fig. 4. (a) Vertical transfer function (a) at the tunnel invert and in the free field at (b) f5:5m; 0m; 0mgT, (c) f23:3m; 0m; 0mgT and (d)

f23:3m; 0m;�15mgT. Superimposed on (b)–(d) are Green’s functions of the layered halfspace (gray line).
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at a considerable depth. At low frequencies, the dynamic stiffness of the soil is larger than the dynamic
stiffness of the tunnel and, therefore, the response in the free field is strongly influenced by the dynamic
characteristics of the soil. It can be observed that, at frequencies below 10Hz, the transfer functions of the
track–tunnel–soil system are identical to Green’s function of the layered halfspace. At higher frequencies the
dynamic stiffness of the tunnel becomes important and the response in the free field becomes different from
Green’s functions. The track resonance occurs at a frequency higher than 100Hz and, therefore, its effect is
not visible in the frequency range between 1 and 100Hz. As the observation points are located far from the
tunnel, the response is primarily due to the waves emanating from the tunnel. The transfer functions as well as
Green’s functions of the layered halfspace on the surface are characterized by an undulating behavior, which is
due to the interference of compression and shear or Rayleigh waves. Furthermore, it can be observed that
higher frequency components are decaying more rapidly with increasing distance from the tunnel, due to
material damping in the soil.

The response of the system has not been affected by the periodicity of the tunnel in the frequency range
between 1 and 100Hz. The effect of the spatial periodicity such as stop bands would occur at much higher
frequencies. Therefore, the tunnel can also be modelled as an equivalent invariant structure and two-and-
a-half-dimensional methods can be employed for tackling this problem. However, in the present study the
coupled periodic finite element–boundary element model has been used which allows to conveniently model a
periodic geometry. This approach has the advantage that the existing three-dimensional boundary element
technology for layered media can be reused, as the periodic Green’s kernels have the same singularities as the
three-dimensional Green’s kernels [25,42]. The two-and-a-half-dimensional approach would have necessitated
the analysis of the singularities of the two-and-a-half-dimensional Green’s functions, which is now avoided by
using the Green-Floquet functions.
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2.4. The wheel– track interaction forces

Ground-borne vibrations from moving trains can be attributed to various excitation mechanisms. A
distinction is made between the quasi-static and dynamic contribution, decomposing the time history gkðtÞ ¼

gks þ gkd ðtÞ of each axle load into a static component gks and a dynamic component gkd ðtÞ. For the
experimental validation of the numerical model, four excitation mechanisms are considered to be important:
the quasi-static excitation, the unevenness excitation due to wheel and rail roughness, the impact excitation
due to rail joints and the parametric excitation due to sleeper periodicity.

2.4.1. Quasi-static forces

The quasi-static excitation occurs when successive axles of the train pass over the track and can be modelled
as constant forces moving along the track with the train speed v. The constant load gks is equal to the axle
weight wk. The Fourier transform ĝksðoÞ equals 2pwkdðoÞ. The frequency content of the free field
displacements is obtained by substituting ĝkðõÞ in Eq. (2). According to the properties of the vehicle, the
resulting axle loads on the trailer car and the motor car are 55.77 and 82.28 kN, respectively.

2.4.2. Dynamic forces

The main excitation mechanisms that give rise to dynamic forces are the random excitation due to rail and
wheel unevenness, the impact excitation due to rail joints and wheel flats and the parametric excitation due to
sleeper periodicity.

For the simple case of the vertical interaction between the wheel and the rail, the contact forces ĝd ðoÞ in the
frequency domain are given as [20]:

½ĈvðoÞ þ ĈtðoÞ�ĝdðoÞ ¼ �ûw=rðoÞ (4)

where ûw=rðoÞ is the relative displacement (unevenness) between the wheel and the rail, while ĈvðoÞ and ĈtðoÞ
are the compliance of the vehicle and the track, respectively.

The frequency content of the rail and wheel unevenness ûw=rðoÞ is calculated from the wavenumber domain
representation ũw=rðkyÞ of the unevenness uw=rðyÞ. The parametric excitation and the excitation due to rail
joints and wheel flats can also be accounted for by Eq. (4), where ûw=rðoÞ is the equivalent unevenness
perceived by the moving vehicle. It should be emphasized that Eq. (4) is only valid for longitudinally invariant
media and the parametric excitation can only be included indirectly through the unevenness term ûw=rðoÞ.
Moreover, as the rail receptance of a discretely supported track and a continuously supported track are
approximately the same at frequencies well below the pinned–pinned resonance, the homogeneous track
model can be used for the predictions.

The train can be well represented with the vehicle’s unsprung mass, as the vehicle’s primary and secondary
suspensions isolate the body and the bogie from the wheel set at frequencies above a few Hertz. In this case, the
vehicle compliance matrix is equal to a diagonal matrix ĈvðoÞ ¼ diagf�1=ðMuo2Þg of order 28. Since the vehicle
compliance is assumed to be a diagonal matrix, the coupling between the axles on the same bogie, known as
leakage, is ignored, although a moderate coupling was observed in the experimental results. Also the effect of
through axle coupling was observed, indicating a strong coupling between the wheels of the same axle.

The track compliance ĈtðoÞ is calculated in the fixed frame of reference as the maximum train speed
considered is 47.6 km/h, which is much less than the critical speed of the track-tunnel-soil system. Like the
transfer functions, the track compliance is computed for a load of 0.5N on both rails. The element Ĉt

lkðoÞ of the
track compliance matrix represents the track response at the position of axle l due to the applied load at axle k.

The displacements of the axles are related to the excitation forces ĝdðoÞ and the vehicle compliance ĈvðoÞ as [20]

ĈvðoÞĝd ðoÞ ¼ �ûaðoÞ (5)

Fig. 5 shows the displacement ûaðoÞ of an axle of the motor car, due to the interaction between the axle and
the track for a unit roughness ûw=rðoÞ ¼ 1. At the wheel–track resonance, which occurs at a frequency of
52Hz, the imposed displacement is taken by the vehicle, while the track displacement tends to zero [20]. From
the vibration measurements on the rail and on the axle boxes of the train, it has also been observed that the
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wheel–track resonance frequency is situated between 50 and 60Hz. This further confirms the choice of the
track parameters.

Rail roughness has been measured using the Müller BBM rail roughness measurement equipment
(RM1200E). Measurements were taken on both rails over 50m of the track on both sides of the reference
section [32]. The data were processed to produce spatial profiles and averaged one-third octave band spectra.
It is seen that rail roughness dominates at low wavenumbers, while wheel roughness dominates at high
wavenumbers (Ref. [32, Figures 4 and 5]). The low wavenumbers correspond to longer wavelengths and are
responsible for excitation in the frequency range of interest (1–100Hz); higher wavenumbers are important for
higher frequency excitation that may give rise to re-radiated noise in buildings in the frequency range up to
250Hz. In the present measurements, no rail unevenness with wavelengths longer than 0.1m could be
measured, restricting the analysis to frequencies above 130Hz for a train speed of 47.6 km/h.

Axle box vibrations provide additional information about the unevenness of the track. Axle box vibrations
have been measured on six axle boxes during the whole journey of the test train on the section between
Regent’s Park and Baker Street stations [26]. The position of these axle boxes on the train is marked in Fig. 3.
Fig. 6a shows the time history of the acceleration of axle box 1 for a period of time corresponding to the
passage of a train over the distance Lr ¼ 108:33m from y ¼ �Lr=2 to y ¼ Lr=2 at a speed of 47.6 km/h. The
axle box response is affected by the combined rail and wheel unevenness, while the peaks in the response are
clearly due to the passage of the axle over joints in the rail.

One-third octave band spectra of the axle box displacements can be obtained from the axle box accelerations.
The axle box displacements are approximately equal to the combined rail and wheel unevenness in the lower
frequency range (below the wheel–track resonance frequency), where the vehicle compliance dominates the track
compliance. Fig. 6b compares the axle box displacements and the measured unevenness. Superimposed on the
same graph are the TSI+ (Technical Specifications for Interoperability) [44] and ISO 3095:2005 [45] limits. The
high response of the axle boxes indicates that the rails are of very poor quality. It can be observed that, even at high
frequencies (short wavelengths), the measured unevenness is approximately equal to the axle box displacement.

In this paper, the wheel/rail interaction forces ĝd ðoÞ are directly derived from the axle box displacements
ûaðoÞ and the vehicle compliance ĈvðoÞ using Eq. (5). The advantage of using Eq. (5) to estimate the
interaction force is that the various excitation mechanisms such as the unevenness excitation, parametric
excitation and excitation due to rail joints and wheel flats are implicitly accounted for. Moreover, Eq. (5) does
not require any approximation or assumption about the unevenness in the frequency range between 1 and
80Hz, where direct unevenness measurements are not available.

Fig. 7 shows the frequency content and the one-third octave band RMS spectrum of the wheel–rail
interaction force as a function of the frequency for a train speed of 47.6 km/h. Fig. 7b also displays the one-
third octave band RMS spectrum of the contact force computed using Eq. (4), where the unevenness has been
approximated with axle box displacements. An overestimation of the dynamic forces around the wheel–track
resonance frequency can be observed.

The frequency content of the estimated forces exhibits a clear maximum near the train-track resonance
frequency between 50 and 60Hz. The force has been estimated by considering the axle box vibrations for a
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period corresponding to the passage of the train over the distance Lr ¼ 108:33m from y ¼ �Lr=2 to y ¼ Lr=2.
This stretch of length Lr is chosen to be symmetric about the reference section. The movement of the axle
boxes along the stretch of length 2Lr ¼ 216m is identified with an electronic light beam positioned on one of
the axle boxes and a reflector located on a tunnel wall near the reference section [32]. It has been assumed that
the response at the reference section is not significantly influenced by unevenness and joints outside this zone.
It should be mentioned that the estimation of the forces is not accurate at very low frequencies below 3–4Hz,
as a band pass filter with a high-pass frequency of 3Hz has been used in the processing of the recorded data.
Moreover, the assumed vehicle model only accounts for the unsprung axle masses and is not accurate at
frequencies below 10Hz, where the train suspensions have a strong influence. The contact force has been
estimated for four axles on the trailer car and one axle on the motor car, for which axle box vibrations have
been measured. The contact force at other axles of a similar car are considered identical except for a phase
shift. Furthermore, identical input on both rails is assumed in the analysis.

3. Response during the passage of a train in the Bakerloo line tunnel

The experiments on the Bakerloo line have been performed during 35 passages of a test train at a speed
between 20 and 50 km/h. In the present section, the response to a train moving at a speed of 47.6 km/h is
predicted and compared to the experimental results.
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The response is calculated by adding the contribution of the dynamic forces and the quasi-static forces in
the frequency domain. In the following, the time history, the frequency content, the running RMS and the
one-third octave band RMS spectra of the measured and predicted vertical vibration velocity are compared.
−20 −10 0 10 20
−0.2

−0.1

0

0.1

0.2

Time [s]

V
el

oc
ity

 [m
/s

]

A1

−20 −10 0 10 20
0

0.01

0.02

0.03

0.04

Time [s]

R
M

S
 v

el
oc

ity
 [m

/s
]

A1

0 50 100 150
0

0.005

0.01

0.015

0.02

Frequency [Hz]

V
el

oc
ity

 [m
/s

/H
z]

A1

2 4 8 16 31.5 63 125 250
80

100

120

140

One−third octave band center frequency [Hz]

R
M

S
 v

el
oc

ity
 [d

B
 re

f 1
0−8

 m
/s

]

A1

Fig. 8. Experimental (gray line) and computed (black line) (a) time history, (b) running RMS, (c) frequency content and (d) one-third

octave band RMS spectra of the vertical velocity on the rail (A1) during the passage of a test train at a speed of 47.6 km/h.
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Fig. 9. Experimental (gray line) and computed (black line) (a) time history, (b) running RMS, (c) frequency content and (d) one-third

octave band RMS spectra of the vertical velocity at the tunnel invert (A6) during the passage of a test train at a speed of 47.6 km/h.
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The running RMS has been calculated with an averaging time of 1 s according to ISO 2631-2 [46]. The one-
third octave band RMS spectra of the vertical velocity are computed according to the German standard DIN
45672-2 [47] on a reference period T2, during which the response is considered to be stationary.
Fig. 10. Measurement setup in Regent’s Park above the Bakerloo line tunnels.
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Fig. 11. Experimental (gray line) and computed (black line) (a) time history, (b) running RMS, (c) frequency content and (d) one-third

octave band RMS spectra of the vertical velocity at f5:5m; 0m; 0mgT (FF01z) during the passage of a test train at a speed of 47.6 km/h.
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Firstly, the response on the rail and the tunnel invert is considered. Fig. 8 shows the predicted and measured
vertical velocity on the rail (A1) during the passage of the test train at a speed of 47:6 km=h. The contribution
of each axle can clearly be distinguished (Fig. 8a), resulting in a quasi-discrete spectrum at low frequencies
governed by the bogie and axle distances and the train speed (Fig. 8c). A peak corresponding to the axle
passage frequency of f a ¼ v=La ¼ 6:92Hz ðLa ¼ 1:91mÞ is observed in the predicted as well as the measured
spectra (Fig. 8c). The good agreement between the predicted quasi-static response at low frequencies below
8Hz with the measurements indicates that the static stiffness of the track has been correctly modelled, which
was unclear from the rail receptance measurement (Fig. 2). From the one-third octave band RMS spectra, it
can be seen that the correspondence between predicted and experimental results around the wheel–track
resonance frequency is reasonably good (Fig. 8d), which illustrates that the dynamic forces due to wheel and
rail unevenness are properly estimated.

Fig. 9 shows the response at the tunnel invert. The quasi-static response has diminished on the tunnel invert.
The dominant frequency content is situated in the frequency range above 30Hz, where mainly the dynamic
forces due rail/wheel unevenness and the rail joints are contributing. The vibration levels are maximum on the
rail and decrease on the tunnel invert. The response at low frequencies between 5 and 12Hz is underestimated
by the numerical model. This could be due to the underestimation of the dynamic forces at these low
frequencies. The influence of the train suspensions is also significant at low frequencies, which has been
disregarded in the model. On the rail, however, the effect of the train suspensions is not that important as the
quasi-static forces dominate the dynamic forces in the low frequency range.

Vibration measurements have also been performed in Regent’s Park above the Bakerloo line tunnels. The
vibration measurements have been performed on the surface as well as at a depth of 15m, where tri-axial
accelerometers have been installed in a seismic cone [31]. In this paper, the computed vertical response is
compared to the measurements on the surface at f5:5m; 0m; 0mgT (FF01z) and f23:3m; 0m; 0mgT (FF02z)
and at depth f23:3m; 0m;�15mgT (FF03z) (Fig. 10).

Figs. 11,12 and 13 compare the experimental and computed vertical free field vibration at points FF01z,
FF02z and FF03z during the passage of a test train at a speed of 47.6 km/h. Both the experimental and
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Fig. 12. Experimental (gray line) and computed (black line) (a) time history, (b) running RMS, (c) frequency content and (d) one-third

octave band RMS spectra of the vertical velocity at f23:3m; 0m; 0mgT (FF02z) during the passage of a test train at a speed of 47.6 km/h.
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Fig. 13. Experimental (gray line) and computed (black line) (a) time history, (b) running RMS, (c) frequency content and (d) one-third

octave band RMS spectra of the vertical velocity at f23:3m; 0m;�15mgT (FF03z) during the passage of a test train at a speeds 47.6 km/h.
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numerical results show that the dominant frequency content is around the wheel–track resonance frequency of
about 50Hz. The bogie passages are not clearly visible in the time history of the response in the free field as the
tunnel is situated at a considerable depth. The quasi-static contribution at low frequencies is not important in
the free field and only the dynamic forces prevail. However, the dynamic forces at low frequencies have not
been predicted well and thus the correspondence at low frequencies is not good. A relatively good agreement
between the experimental and numerical results is observed for the response at points FF02z and FF03z at
frequencies above 12Hz. It can be observed that the vertical response at the surface (FF02z) has
approximately the same magnitude as the vertical component at depth at the same location (FF03z). The
response on the free surface at a lateral distance of 5.5m from the tunnel (FF01z) is underestimated by
the numerical model around the wheel–track resonance frequency between 30 and 80Hz. Furthermore, the
predicted response at FF01z is lower than the response at point FF02z, particularly in the frequency range
between 30 and 80Hz. This can be observed from the predicted transfer functions as well (Fig. 4). The
amplification of the measured free field vibration at FF01z could probably be due to local site effects or
inhomogeneities in the top layer. The agreement between the measurements and predictions is better for a
point at depth (FF03z), which is located in the London clay. It may be noted that the background vibration
levels have not been taken into consideration. This would partly account for the difference between the
predicted and experimental results.

It is expected that higher frequency components attenuate with increasing distance from the tunnel due to
material damping in the soil. This can be clearly observed in the predicted results but not in the measurements.
This could be due to the inaccurate estimation of the material damping ratio in the soil.

4. Validation at other train speeds

In the following, 19 out of 35 passages of the test train in the Bakerloo line tunnel are considered. The train
speed was varied between 20 and 50 km/h for the passages in the north-bound direction. The intention was to
perform the experiments at varying speed for north-bound passages only. Eleven passages in the north-bound
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direction at speeds 23.86, 24.19, 24.74, 32.53, 32.96, 37.36, 38.88, 44.34, 45.33, 46.40 and 47.60 km/h are
considered in this paper. After each train passage in the north-bound direction, the test train returned to
Regent’s Park station at a constant speed of about 20 km/h. The measurements have been performed for these
train passages as well and this has provided supplementary data. Eight passages in the south-bound direction
at speeds 21.36, 21.78, 22.18, 23.41, 23.49, 23.50, 23.65 and 23.84 km/h are also considered. All events (north
and south-bound passages) can be classified into four groups corresponding to speeds between: (1) 20–25 km/h
(11 events), (2) 30–35 km/h (2 events), (3) 36–40 km/h (2 events) and (4) 44–48 km/h (4 events). The predictions
have been made for one train speed from each set, i.e. for 23.86, 32.96, 38.88 and 47.6 km/h. The computations
have been performed for a particular train speed, as the excitation force is estimated directly from the axle box
vibrations using Eq. (5). If predictions have to be made for another train speed that is not considered in the
experiments, the excitation force can be determined from Eq. (4) by approximating the unevenness with the
measured axle box displacements as discussed in Section 2.4.

In the following, the running RMS and the one-third octave band RMS spectra of the measured and
predicted vertical vibration velocity are compared. It should be remarked that set 1 consists of more events as
additional experimental results for the train passages in the south-bound direction are available. Thus, a
statistical analysis is performed on this data set by computing the mean value m and the standard deviation s.
Apart from the mean value m, the values m� 1s are displayed, which bounds a 68.3% confidence interval if it
is assumed that the experimental data follow a Gaussian distribution. Since for other sets the number of events
is limited, experimental results for all available train speeds are shown in the comparison.

Since the train speeds considered are relatively low, the variation in the response with train speed can
directly be linked to the estimated axle loads. Fig. 14 shows the running RMS of the axle loads as a function of
distance along the track and the one-third octave band RMS spectra of the axle loads. The one-third octave
band RMS spectra of the axle loads are computed for a period of time corresponding to the passage of a train
over the distance Lr between the first and the last axle of the train. The variation in the axle loads with train
speed can be observed. For the three lower train speeds the peaks in the running RMS appear at the same
location along the track, which are due to rail joints or other defects present on the track. It is crucial to
identify the exact position of the train on the track for different speeds to compare the response on the rail and
the tunnel invert. This is due to the fact that this response significantly varies along the track and can be
attributed to the local influence of the rail joints. However, the response in the free field is not so sensitive to
the exact position of the train along the track for different train speeds and is mainly determined by the
average input power. For the train speed of 47.6 km/h, the axle load increases significantly and gives rise to
higher levels of vibrations. This could be due to the high impact forces and possible wheel–rail separation at a
higher speed [48], which has not been accounted for in the model. The maximum in the frequency domain
occurs around the wheel–track resonance frequency between 50 and 100Hz for all train speeds. Since the
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Fig. 14. (a) Running RMS and (b) one-third octave band RMS spectra of the estimated contact force at the front axle of the train for
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frequency range of interest is between 1 and 100Hz, a low-pass filter with a cut-off frequency of 200Hz is
applied to the axle box vibrations in order to determine the axle loads.

Figs. 15 and 16 show the running RMS and the one-third octave band RMS spectra of the predicted
velocity on the rail and the tunnel invert for the passages of the Bakerloo line tunnel at a speed of 23.86, 32.96,
38.8 and 47.6 km/h. For the events corresponding to set 1, the mean value m of the experimental RMS velocity
and the m� 1s intervals are displayed (Figs. 15a and 16a). For sets 2–4, experimental results for all speeds are
superimposed on the graphs. The predicted response is in good agreement with the measured response on the
rail and tunnel invert for all four speeds considered. It can be observed that the length of the time window in
the predictions as well as in the measurements is inversely proportional to the speed of the train. For the three
lower speeds, the troughs in the running RMS velocity can be attributed to the passages of the bogies of the
train. For the higher speed of 47.6 km/h, this pattern is not apparent as a consequence of higher impact forces
on the rail. The RMS spectra at frequencies below 2Hz should not be considered as a high-pass filter with a
frequency of 2Hz has been used in the processing of the data. The response on the rail and the tunnel invert is
underestimated at lower frequencies between 5 and 20Hz, which is due to underestimation of the dynamic
forces at low frequencies. These differences are more pronounced at the tunnel invert for the three lower
speeds. The dominant frequency content is above 30Hz, where the correspondence between the predictions
and measurements is reasonably good. The prediction accuracy on the rail and the tunnel invert for the
considered train speeds is within 5 dB at frequencies above 20Hz.

Figs. 17, 18 and 19 compare the running RMS and one-third octave band RMS spectra of the predicted and
the measured velocity in the free field at f5:5m; 0m; 0mgT (FF01z), f23:3m; 0m; 0mgT (FF02z) and
f23:3m; 0m; �15:0mgT (FF03z). The mean value m and m� s bounds of the experimental RMS velocity are
shown for set 1, while all measurement results are displayed for other sets. The differences between the
predictions and measurements in the free field at FF01z are considerable for all train speeds, which can be
attributed to the uncertainty in the soil parameters. The correspondence between the computations and
measurements is better at points FF02z and FF03z in the free field. The experimental running RMS values
extend for a longer period than the predicted running RMS. This reflects the contribution of some noise in the
data. Furthermore, the unevenness outside a stretch of length Lr ¼ 216m has not been considered in the
analysis, which may have some influence on the starting and end part of the predicted response. The stationary
part of the response, however, is mainly influenced by the unevenness in the considered zone.

The contribution of the quasi-static forces is negligible in the free field. The dominant frequency content is
between 30 and 100Hz, where lies the wheel–track resonance frequency. The dynamic forces due to rail-wheel
unevenness, rail joints and the parametric excitation are contributing to the response in the free field. The
discrepancy between the computations and the experiments is larger in the free field than in the tunnel.
However, the correspondence around the wheel–track resonance frequency of about 52Hz is reasonably good
and the difference between the computations and experiments is less than 10 dB for points FF02z and FF03z
in the free field. The predicted as well as measured vibration levels in the free field are much lower than
2� 10�4 m=s, the limit for human perception.

From these results, it can be seen that the general trend in the variation of the response with train speeds is
similar for measurements as well as predictions. To quantify the speed dependance, the maximum of the RMS
velocity is plotted as a function of train speed. The reason for considering the maximum RMS velocity instead
of the peak particle velocity is that people respond to the average vibration amplitude during 1 s rather than
the peak value [49].

As mentioned before, the dependence of the response is directly proportional to the estimated wheel/track
interaction force as the considered train speeds are very low. Fig. 20 shows the maximum RMS levels
of the contact force at different speeds. The linear regression on the data shows a moderate increase in the
force with train speeds. The increase in the force with speed can be associated to the unevenness and
rail joints present on the track. Theoretically, unevenness is modelled as a random process characterized by a
single sided power spectral density [50,51]. In the present case, it is difficult to relate the variation in the
dynamic force with one of these PSD curves, as the dynamic forces are induced by the unevenness as well as
the rail joints.

Fig. 21 shows the maximum RMS velocity of the response on the rail (A1) and the tunnel invert (A6). It can
be seen that the trend in the variation of the force and the response is very similar. Superimposed on the same
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Fig. 15. Computed (solid black line) running RMS and one-third octave band RMS spectra of the vertical velocity on the rail (A1) for the

train passages at a speed of (a) 23.86 km/h, (b) 32.96 km/h, (c) 38.8 km/h and (d) 47.6 km/h. Superimposed on (a) are the values m and

m� 1s of the experimental data (gray lines) belonging to set 1. Superimposed on (b), (c) and (d) are the experimental results (gray lines)

for sets 2, 3 and 4, respectively.
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Fig. 16. Computed (solid black line) running RMS and one-third octave band RMS spectra of the vertical velocity on the tunnel invert

(A6) for the train passages at a speed of (a) 23.86 km/h, (b) 32.96 km/h, (c) 38.8 km/h and (d) 47.6 km/h. Superimposed on (a) are the

values m and m� 1s of the experimental data (gray lines) belonging to set 1. Superimposed on (b), (c) and (d) are the experimental results

(gray lines) for sets 2, 3 and 4, respectively.
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Fig. 17. Computed (solid black line) running RMS and one-third octave band RMS spectra vertical velocity in the free field at

f5:5m; 0m; 0mgT (FF01z) for the train passages at a speed of (a) 23.86 km/h, (b) 32.96 km/h, (c) 38.8 km/h and (d) 47.6 km/h.

Superimposed on (a) are the values m and m� 1s of the experimental data (gray lines) belonging to set 1. Superimposed on (b), (c) and (d)

are the experimental results (gray lines) for sets 2, 3 and 4, respectively.
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Fig. 18. Computed (solid black line) running RMS and one-third octave band RMS spectra vertical velocity in the free field at

f23:3m; 0m; 0mgT (FF02z) for the train passages at a speed of (a) 23.86 km/h, (b) 32.96 km/h, (c) 38.8 km/h and (d) 47.6 km/h.

Superimposed on (a) are the values m and m� 1s of the experimental data (gray lines) belonging to set 1. Superimposed on (b), (c) and (d)

are the experimental results (gray lines) for sets 2, 3 and 4, respectively.
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Fig. 19. Computed (solid black line) running RMS and one-third octave band RMS spectra vertical velocity in the free field at

f23:3m; 0m;�15mgT (FF03z) for the train passages at a speed of (a) 23.86 km/h, (b) 32.96 km/h, (c) 38.8 km/h and (d) 47.6 km/h.

Superimposed on (a) are the values m and m� 1s of the experimental data (gray lines) belonging to set 1. Superimposed on (b), (c) and (d)

are the experimental results (gray lines) for sets 2, 3 and 4, respectively.
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Fig. 21. Experimental (empty circles) and computed (filled circles) maximum RMS velocity on (a) the rail (A1) and (b) the tunnel invert

(A6).
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graphs are the predictions at train speeds 23.86, 32.96, 38.88 and 47.60 km/h. The difference between the
experimental and predicted results is less than 5 dB for the points in the tunnel.

Fig. 22 shows the maximum RMS velocity of the response at 10 points in the free field. Points FF01z,
FF02z, FF03z, FF04z and FF05z are located on line 1 perpendicular to the tunnel, while points FF06z,
FF07z, FF08z, FF09z and FF10z are on line 2 (Fig. 10). The increase in the predicted response is
approximately the same as shown by a linear fit on the measurement data, i.e. doubling the train speed
increases the vibration levels by 4–6 dB. This trend is quite generic, as it is also observed on other sites and
stated in a report by FRA [49]. At points FF01z and FF06z, the difference between the maximum RMS
velocity for the experiments and predictions is very large, which can be attributed to uncertainty in the soil
parameters and variations due to local site conditions. The difference is less than 10 dB at the observation
points FF02z, FF03z, FF07z and FF08z. At larger distances from the tunnel (FF04z, FF05z, FF09z, FF10z),
the agreement between the experimental and predicted results is poor. It can be observed that the attenuation
in the response along lines 1 and 2 is largely overestimated by the numerical model. This can be due to a
inaccurate estimation of the material damping ratio in the soil, which is an important parameter for
reasonable predictions at large distances from the source. To elucidate the importance of the material damping
ratio, the experimental results are also compared to the maximum RMS velocity calculated by halving the
material damping ratio. The correspondence between the predicted and experimental results improves at large
distances. As mentioned earlier, the material damping ratio has been determined by laboratory testing on
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Fig. 22. Experimental (empty circles) and computed (filled circles) maximum RMS velocity in the free field at (a) FF01z, (b) FF02z, (c)

FF03z, (d) FF04z, (e) FF05z, (f) FF06z, (g) FF07z, (h) FF08z, (i) FF09z and (j) FF10z for different train speeds. Superimposed on the

graphs is the maximum RMS velocity computed by halving the material damping ratio of the soil (crosses).
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undisturbed samples from the site. However, these values may not give a good representation of the material
damping ratio in the entire soil domain. Several methods [52,53] have been developed to determine the
material damping ratio from in situ tests. These techniques must be applied to estimate a suitable value of the
material damping ratio that can be used for prediction of ground-borne vibrations using the numerical tools.

The moderate dependence on the speed is observed for all observation points in the tunnel and in the free
field.
5. Conclusions

In this paper, the experimental validation of a numerical model for the prediction of subway induced
vibrations has been presented. An elaborate measurement campaign has been conducted at a site in Regent’s
Park situated above the Bakerloo line tunnels of London Underground in order to validate the numerical
model.

The coupled periodic finite element–boundary element model fully accounts for the dynamic interaction
between the train, the track, the tunnel and the soil. The response to moving loads (trains) is computed by first
estimating the excitation forces and then solving the track–tunnel–soil interaction problem to compute the
vibrations in the tunnel and the free field. The interaction force determined from the axle box vibrations
accounts for various excitation mechanisms such as unevenness excitation, excitation due to rail joints and
parametric excitation. The vibrations in the tunnel as well as in the free field have been predicted and validated
for the passage of a test train in the Bakerloo line. The correspondence between the predicted and
experimental results is reasonably good, given the large number of modelling uncertainties. The following
conclusions can be drawn from the present analysis:
(1)
 The agreement between the predictions and measurements is better in the tunnel than in the free field. The
discrepancy in the free field can be attributed to the uncertainty in the dynamic soil properties. The top
layer has been observed inhomogeneous from the in situ tests (SCPT and CPT) and this may have resulted
in a large difference between the predictions and measurements at points FF01z and FF06z in the free
field, which are located on the free surface close to the tunnel. At points further away from the tunnel
(FF02z, FF03z, FF07z and FF08z) the prediction accuracy is within 10 dB.
At larger distances from the tunnel (FF04z, FF05z, FF09z and FF10z) the predicted response is severely
underestimated, which can be attributed to a relatively high value of the material damping ratio used in the
computations. The material damping ratio is an important parameter for accurate predictions in the free
field, particularly at large distances from the source. This is demonstrated by considering a lower value of
the material damping ratio. It has been observed that the maximum RMS velocity increases by about
10 dB, when the material damping ratio is halved. Therefore, it is desirable to correctly determine the
material damping ratio from in situ tests, rather than from laboratory testing of soil samples. It should also
be remembered that, for accurate predictions in the free field, it is important to precisely know the
properties of the soil around the tunnel, which was not possible in the present case as the tunnel is situated
at a considerable depth.
(2)
 The differences between the predictions and measurements at frequencies less than 15Hz, can be attributed
to the underestimation of the dynamic forces. This could be partly because the train suspensions have been
disregarded, and partly because some of the excitation mechanisms are not properly represented in the axle
box vibrations. For example, distinct peaks at the sleeper passage frequency between 5 and 15Hz for
different speeds between 20 and 50 km/h are not observed in the measurements as well as the predictions.
(3)
 The general trend in the variation of the response with train speed is similar for the predictions as well as
the measurements. An increase of 4–6 dB in the maximum RMS velocity is observed by doubling the train
speed. This dependence is related to the variation in the wheel/track interaction forces arising due to the
rail and wheel unevenness and the rail joints.
This paper demonstrates that the coupled periodic finite element–boundary element model can be used to
make realistic predictions provided a careful consideration is given to the modelling of the vehicle, track,
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tunnel and the soil. As a large amount of uncertainty is still involved in the problem, it is difficult to achieve a
prediction accuracy of better than 10 dB.
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